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Abstract

We analyze a simple greedy algorithm for finding small dominating sets in undi-

rected graphs of N nodes and M edges. We show that dg ≤ N + 1−
√
2M + 1, where

dg is the cardinality of the dominating set returned by the algorithm.

Keywords: approximate algorithms, analysis of algorithms.

Introduction

Let G(V,E) be an undirected graph with N nodes and M edges. A dominating

set of G is a set of nodes such that every node not in the set is adjacent to at least

one node in the set. A dominating set of smallest cardinality is known as a minimum

dominating set. The problem of finding a minimum dominating set is combinatorially

hard (its decision version is NP-complete [2]), so as a practical matter, one has to settle

for approximate, but fast algorithms. In this note, we analyze the performance of a

simple, greedy algorithm of this type. Let dg be the size of the dominating set returned

by the greedy algorithm, and let do be the cardinality of a minimum dominating set.

We show that an upper bound on do due to Vizing [5], applies to dg as well:

dg ≤ N + 1−
√
2M + 1.

Previous Work

The greedy algorithm considered here is an analog of one that has been analyzed

by Chvatal [1] and others [3], [4] for finding small set covers. The focus there has

been on comparing the cardinality of the set cover returned by the algorithm to that

of the smallest set cover, in the worst case. Since any dominating set problem can be

formulated as a set covering problem, the results for the set covering algorithm can be
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specialized to our problem. A result almost directly obtained from the work of Chvatal

[1] is that

dg

do
≤

δ+1
∑

i=1

1

i
,

where δ is the maximum degree of a node in the graph. The result of this paper describes

the performance of the algorithm in terms of the dimensions of the graph, and should

be viewed as complementary to the above result.

Greedy: The Approximation Algorithm

Let V = {1, ..., N}, and define D = φ. Greedy adds a new node to D in each

iteration, until D forms a dominating set. A node, j, is said to be “covered” if j ∈ D

or if any neighbor of j is in D. A node that is not covered is said to be uncovered.

(Since D = φ at the beginning of the algorithm, it follows that all the nodes are

initially uncovered.) In each iteration, put into D the least indexed node that covers the

maximum number of uncovered nodes. Stop when all the nodes are covered. (Selecting

the least numbered element is just a way of breaking ties.) An example of Greedy at

work is provided in Figure 1.

Worst Case Performance in terms of N and M

Here we show that an upper bound on do due to Vizing [5] is met by dg as well:

Theorem 1. For an undirected graph, G, with N nodes and M edges:

dg ≤ N + 1−
√
2M + 1. (1)

Proof: First convert G into a directed graph by replacing every edge {i, j} by 2 directed
edges (i,j) and (j,i), and by adding self-loops (i,i) at every node i. Define the outdegree

of a node as the number of edges emanating from it. Any node j, such that (n, j) is an

edge in the directed graph, is said to be in the out-neighborhood of n. We can interpret

Greedy on the constructed directed graph as follows: Include the least indexed node,

n, with the greatest outdegree in the dominating set; delete all edges coming into any

node in the out-neighborhood of n; and if there are any edges left, include another node

in the dominating set, else stop. To see that this is identical to Greedy, interpret a

directed edge (i,j) to mean that if i were included in the dominating set, the previously

uncovered node, j, would be covered by i (see figure 2).

Suppose Greedy picks node vi in the ith iteration. Let S(i) be the set of previously

uncovered nodes which were covered by vi, and let |S(i)| = mi. Finally, define Ei to be
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the number of edges left at the end of the ith iteration coming from uncovered nodes,

i.e., Ei does not include edges from covered nodes. Set E0 = 2M +N , and also notice

that Edg
= 0. (Observe that when there are no edges left, we have found a dominating

set.) Our strategy in the proof is the following: We first find a lower bound on E0 in

terms of the mi’s. Next, we show that this lower bound is no greater than a particular

expression that is independent of the mi’s. Algebraic simplification completes the proof.

First we show that at most m2
i edges from previously uncovered nodes are deleted

in the ith iteration. Consider some j ∈ S(i). The outdegree of j can be at most mi

just before the ith iteration. Now notice that no edges into an uncovered node can

be deleted before the node is covered. Since j is uncovered before the ith iteration,

for each edge coming into j from a uncovered node, there is also an edge going out of

j to that uncovered node. Thus there can be at most mi edges coming into j from

uncovered nodes, and the total number of edges running from previously uncovered

nodes to members in S(i) is at most m2
i . There may also be edges from previously

covered nodes to members of S(i), but we need not consider them, since we are counting

(in Ei) only edges from uncovered nodes.

Next, we estimate the number of edges from S(i) to uncovered nodes which are

not in S(i). These edges are not deleted by Greedy, but they are not counted in

the definition of Ei either. It is clear that the outdegree of every node in S(i) must

be ≤ mi − 1, since the self loops of all such nodes will have been deleted in the ith

step. Thus the number of outgoing edges from S(i), after iteration i is ≤ mi(mi − 1).

However, in the first and last iterations, we can tighten this bound slightly. We know

that v1 ∈ S(1), and so all edges entering and leaving v1 will be deleted after the first

iteration. Further, the other nodes in S(1) can have outdegree of at most m2 at the

end of the first iteration. Thus, the number of edges (at the end of the first iteration)

from S(1) to uncovered nodes not in S(1) is at most (m1 − 1)m2. Finally, note that no

edges remain at the end of the last iteration, and so the number of edges from S(dg) to

uncovered nodes must be zero.

By the definition of Ei, we conclude that for 2 ≤ i < dg:

Ei ≥ Ei−1 −m2
i −mi(mi − 1).

For the special cases, i = 1 and i = dg:

E1 ≥ Eo −m2
1 − (m1 − 1)m2,

and

Edg
≥ Edg−1 −m2

dg
.
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Edg
= 0 by the definition of dg. Thus,

0 = Edg
≥ −





dg
∑

i=1

m2
i + (m1 − 1)m2 +

dg−1
∑

i=2

mi(mi − 1)



 + E0.

Solving for E0:

E0 ≤
dg
∑

i=1

m2
i + (m1 − 1)m2 +

dg−1
∑

i=2

mi(mi − 1). (2)

Now notice that
∑dg

i=1 mi = N , and that m1 ≥ m2 ≥ ... ≥ mdg
≥ 1. We claim that

the RHS of (2) attains its maximum with respect to the mi’s subject to the constraints

just mentioned, when

m1 = N − dg + 1,m2 = m3 = ...mdg
= 1.

This is easily seen to be true by contradiction. Suppose the maximum is achieved so

that the highest order mi which is greater than 1 is not m1, but say mj , j > 1. Now

reduce mj to 1 and add mj − 1 to m1 (we can do this because none of the constraints

is violated), and the difference in the RHS is seen to be non-negative. This contradicts

the assumption.

Substituting the maximum values in the RHS of (2) we have:

E0 = 2M +N ≤ (N − dg + 1)2 + dg − 1 + (N − dg),

⇒ dg ≤ N + 1−
√
2M + 1.

Done

The bound of Theorem 1 is met exactly by graphs of the type shown in Figure 3.
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{1, 2, ..., 7}N = 13,M = 247 = dg ≤ 14−
√
49 = 7do = 6{2, 3, ..., 7}
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