EE126: Probability and Random Processes
 Lecture 14: Total Variance, Transforms

Abhay Parekh
UC Berkeley

March 8, 2011
(1) Logistics
(2) Review
(3) Estimating X with $E[X \mid Y]$
(4) Total Variance
(5) Transforms

Midterm

- It was not an easy exam. You did really well as a group! Most of you should feel very good about your performance.
- Regrades until Thursday. See your GSIs or me. I will make final call.
- Please look at the exam solutions.
- Let's wait until the last 10 mins to discuss more.

Convolution

Let $Z=X+Y$ and assume that X, Y continuous and independent.

$$
f_{Z}(z)=\int_{x} f_{X}(x) f_{Y}(z-x)=\int_{y} f_{Y}(y) f_{X}(z-y) d x
$$

Graphical Convolution: X, Y, Z uniform $[0,1], W=X+Y+Z$.

Covariance

Given X, Y :

$$
\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]=E[(X-E[X])(Y-E[Y])]
$$

- $\operatorname{cov}(X, X)=\operatorname{var}(X)$
- $\operatorname{cov}(a X+b, Y)=$
- $\operatorname{cov}(a, Y)=0$
- $\operatorname{cov}(X, Y+Z)=\operatorname{cov}(X, Y)+\operatorname{cov}(X, Z)$
- Covariance $=0 \Rightarrow E[X]=E[X \mid Y]$
- X, Y independent \Rightarrow covariance $=0$
- Covariance $=0 \nRightarrow, X, Y$ independent.

Correlation Coefficient

For any two random variables, X and Y with non zero variance, the correlation coefficient $\rho(X, Y)$ is

$$
\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}} .
$$

Special cases for the correlation coefficient, $\rho(X, Y)$:

$$
\rho(X, Y)= \begin{cases}1, & Y=a X+b a>0 ; \\ -1, & Y=a X+b, a<0 ; \\ 0, & E[X \mid Y]=E[X] .\end{cases}
$$

More results

Sum of Variances

Given X_{1}, \ldots, X_{n} :

$$
\operatorname{var}\left(\sum_{i} X_{n}\right)=\sum_{i} \operatorname{var}\left(X_{i}\right)+\sum_{i} \sum_{j \neq i} \operatorname{cov}\left(X_{i}, X_{j}\right)
$$

Iterated Expectation

Given two random variables, X, Y :

$$
E[E[X \mid Y]]=E[X]
$$

Estimating with X from $Y: E[X \mid Y]$

Suppose we want to estimate X but have no observations. How to find the \hat{X} which minimizes $E\left[(X-\hat{X})^{2}\right]$, i.e. the mean square error?

$$
\begin{aligned}
E\left[(X-\hat{X})^{2}\right] & =\operatorname{var}(X-\hat{X})+(E[X-g(X)])^{2} \\
& =\operatorname{var}(X)+(E[X-\hat{X}])^{2} \\
& =\operatorname{var}(X)+(E[X]-\hat{X})^{2}
\end{aligned}
$$

So pick $\hat{X}=E[X]$ Now suppose we make an observation for random variable Y, i.e. $Y=y$. Then what should our estimate be? Again, we want to minimize mean square error (given $Y=y$) SO:

$$
E\left[(X-\hat{X})^{2} \mid Y=y\right] \text { is minimized at } \hat{X}=E[X \mid Y=y]
$$

$E[X \mid Y]$: Estimation Error

The mean of the estimate:

$$
E[\hat{X}]=E[E[X \mid Y]]=E[X]
$$

Also,

$$
E[\underbrace{X-\hat{X}}_{\text {estimation error }}]=E[X-E[X \mid Y]]=E[X]-E[X]=0
$$

An estimator with zero average estimation error is called unbiased.

$$
E[X \mid Y] \text { is an unbiased estimator of } X \text {. }
$$

Estimating with X from $Y: E[X \mid Y]$

\hat{X} is uncorrelated with the estimation error $\hat{X}-X$.

$$
\begin{aligned}
\operatorname{cov}(\hat{X}, \hat{X}-X) & =E[\hat{X}(\hat{X}-X)]-E[\hat{X}] E[\hat{X}-X] \\
& =E[\hat{X}(\hat{X}-X)]-E[X] 0 \\
& =E\left[(\hat{X})^{2}\right]-E[X \hat{X}] \\
& =E\left[(\hat{X})^{2}\right]-E[E[X \hat{X} \mid Y]] \\
& =E\left[(\hat{X})^{2}\right]-E\left[(\hat{X})^{2}\right] \\
& =0
\end{aligned}
$$

So

$$
\operatorname{var}(\hat{X}+X-\hat{X})=\operatorname{var}(\hat{X})+\operatorname{var}(X-\hat{X})
$$

So

$$
\operatorname{var}(X)=\operatorname{var}(E[X \mid Y])+\operatorname{var}(X-E[X \mid Y])
$$

Law of Total Variance

Since $E[X-\hat{X}]=0$, $\operatorname{var}(X-\hat{X})=E\left[(X-\hat{X})^{2}\right]=E\left[E\left[(X-\hat{X})^{2}\right] \mid Y\right]$.
Now consider the random variable $X \mid Y$. Then

$$
E[\operatorname{var}(X \mid Y)]=E\left[E\left[(X-E[X \mid Y])^{2}\right] \mid Y\right] .
$$

In the previous slide we showed that:

$$
\operatorname{var}(X)=\operatorname{var}(E[X \mid Y])+\operatorname{var}(X-E[X \mid Y])
$$

Substituting:
Given random variables, X, Y :

$$
\operatorname{var}(X)=\operatorname{var}(E[X \mid Y])+E[\operatorname{var}(X \mid Y)]
$$

Example: Bias of Coin

We toss a biased coin n times. Y : prob of heads, and X : number of heads. Y is distributed uniformly over $[0,1]$. What are $E[X]$ and $\operatorname{var}(X)$?

$$
\begin{gathered}
\hat{X}=E[X \mid Y]=n Y \\
E[X]=E[E[X \mid Y]]=E[n Y]=\frac{n}{2}
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{var}(E[X \mid Y])=\operatorname{var}(n Y)=n^{2} \operatorname{var}(Y)=\frac{n^{2}}{12} \\
\operatorname{var}(X \mid Y)=n Y(1-Y) \\
E[\operatorname{var}(X \mid Y)]=n\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{n}{6} \\
\operatorname{var}(X)=\frac{n^{2}}{12}+\frac{n}{6}
\end{gathered}
$$

Example: Bias of a Coin Continued

Same problem: Let $X_{i}=1$ if toss i is a head and $X_{i}=0$ o.w. What is $\operatorname{cov}\left(X_{i}, X_{j}\right), i \neq j$?

$$
\begin{gathered}
\operatorname{cov}\left(X_{i} X_{j}\right)=E\left[X_{i} X_{j}\right]-E\left[X_{i}\right] E\left[X_{j}\right] \\
E\left[X_{i}\right]=E\left[E\left[X_{i} \mid Y\right]\right]=E[Y]=0.5 \\
E\left[X_{i} X_{j}\right]=E\left[E\left[X_{i} X_{j} \mid Y\right]\right]=E\left[E\left[X_{i} \mid Y\right] E\left[X_{j} \mid Y\right]\right]=E\left[Y^{2}\right]=\int_{0}^{1} y^{2} d y=\frac{1}{3} \\
\operatorname{cov}\left(X_{i} X_{j}\right)=\frac{1}{3}-\frac{1}{4}=\frac{1}{12}=\operatorname{var}(Y)
\end{gathered}
$$

Therefore the tosses are not independent...
Check result for $\operatorname{var}(X)$:

$$
\operatorname{var}\left(X_{i}\right)=E\left[X_{i}^{2}\right]-E\left[X_{i}\right]^{2}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}
$$

$\operatorname{var}\left(X_{1}+\ldots+X_{n}\right)=\frac{n}{4}+\frac{n(n-1)}{12}=\frac{1}{12}\left(3 n+n^{2}-n\right)=\frac{n^{2}}{12}+\frac{n}{6}$

Summing a Random Number of Random Variables

Suppose $Y=X_{1}+\ldots X_{N}$, the X_{i} are iid, but N is a random variable independent of the X_{i} 's. What are $E[Y]$ and $\operatorname{var}(Y)$?

$$
\begin{gathered}
E[Y]=E[E[Y \mid N]]=E\left[N E\left[X_{i}\right]\right]=E[N] E\left[X_{i}\right] \\
E[Y]=E[N] E[X] \\
\operatorname{var}(Y)=\operatorname{var}(E[Y \mid N])+E[\operatorname{var}(Y \mid N)
\end{gathered}
$$

Now

$$
\begin{gathered}
\operatorname{var}(E[Y \mid N])=\operatorname{var}\left(N E\left[X_{i}\right]\right)=E\left[X_{i}\right]^{2} \operatorname{var}(N) \\
E[\operatorname{var}(Y \mid N)]=E\left[N \operatorname{var}\left(X_{i}\right)\right]=\operatorname{var}\left(X_{i}\right) E[N]
\end{gathered}
$$

So

$$
\operatorname{var}(Y)=E\left[X_{i}\right]^{2} \operatorname{var}(N)+E[N] \operatorname{var}\left(X_{i}\right)
$$

Moment Generating Functions - Transforms

Sometimes rather than working with $f_{X}(x)$ we work with $E\left[e^{s x}\right]$ where s is any scalar. This is the Transform or Moment Generating Function of X.
Why?
(1) It is easier to find $E\left[X^{k}\right]$, i.e. the moments of X (differentiate rather than integrate)
(2) It is easier to add independent random variables (multiply rather than convolve)
(3) It is easier prove things (e.g. Central Limit Theorem)

Given a random variable X, the Transform of $X, M_{X}(s)$ is defined as

$$
M_{X}(s)=E\left[e^{s X}\right]
$$

for all scalars s

Generating Moments with Transforms

Use the result that

$$
e^{s x}=1+s x+\frac{s^{2} x^{2}}{2!}+\frac{s^{3} x^{3}}{3!}+\ldots
$$

Let X be a rv. Now use Linearity of Expectations:

$$
E\left[e^{s x}\right]=1+s E[x]+\frac{s^{2}}{2!} E\left[X^{2}\right]+\ldots
$$

Now observe that

$$
\begin{aligned}
\left.\frac{d E\left[e^{s x}\right]}{d s}\right|_{s=0} & =E[X] \\
\left.\frac{d^{2} E\left[e^{s x}\right]}{d s^{2}}\right|_{s=0} & =E\left[X^{2}\right] \\
\left.\frac{d^{3} E\left[e^{s x}\right]}{d s^{3}}\right|_{s=0} & =E\left[X^{3}\right]
\end{aligned}
$$

Moment Generating Function

For $M_{X}(s)=E\left[e^{s x}\right]$:

$$
\left.\frac{d^{n} M_{X}(s)}{d s^{n}}\right|_{s=0}=E\left[X^{n}\right]
$$

Properties:

(1) $M_{X}(0)=1$
(2) If $X>0, M_{X}(-\infty)=0$ and if $X<0$ then $M_{X}(\infty)=0$.
(3) If $Y=a X+b$ than

$$
M_{Y}(s)=E\left[e^{s(a X+b)}\right]=e^{s b} E\left[e^{a X}\right]=e^{s b} M_{X}(a s)
$$

Example: Exponential Distribution

$f_{X}(x)=\lambda e^{-\lambda x} \Rightarrow E\left[e^{s x}\right]=\lambda \int_{x=0}^{\infty} e^{s x} e^{-\lambda x} d x$

$$
M_{X}(s)=\frac{\lambda}{\lambda-s}
$$

$M(0)=1, \lim _{s \rightarrow-\infty} M_{X}(s)=0$.
Also, if $Y=a X+b$ then

$$
\begin{gathered}
M_{Y}(s)=e^{s b} M_{X}(a s)=e^{s b} \frac{\lambda}{\lambda-a s} \\
E[Y]=b e^{s b} \frac{\lambda}{\lambda-a s}+\left.e^{s b} \frac{\lambda}{(\lambda-a s)^{2}} a\right|_{s=0} \\
E[Y]=b+\frac{a}{\lambda}
\end{gathered}
$$

Inversion of Transform

It is somewhat surprising that a given transform corresponds to a unique CDF, i.e. $M_{X}(s)$ contains all the information in $f_{X}(x)$.
Why is this true? $M_{X}(s)$ is the bilateral Laplace transform of $f_{X}(x)$.
The inversions are usually done via pattern matching...
Example:

$$
\begin{gathered}
M_{X}(s)=\frac{1}{2} e^{-3 s}+\frac{1}{4} e^{200 s}+\frac{1}{4} e^{s} \\
p_{X}(x)= \begin{cases}-3, & \text { with prob } 0.5 \\
200, & \text { with prob } 0.25 \\
1, & \text { with prob } 0.25\end{cases}
\end{gathered}
$$

Helps to know $M_{X}(s)$ for popular distributions.
We won't require you to know $f_{X}(x), M_{X}(s)$ pairs.

Combinations

(1) Mixture of distributions: Suppose $\sum_{i=1}^{n} p_{i}=1$, and $f_{X}(x)=\sum_{i=1}^{n} p_{i} f_{X_{i}}(x)$. Then

$$
M_{X}(s)=\sum_{i=1}^{n} p_{i} M_{X_{i}}(s)
$$

(2) Sum of Independent Random Variables: $Z=X+Y ; X, Y$ independent. Then
$M_{Z}(s)=E\left[e^{(X+Y) s}\right]=E\left[e^{X_{s}} e^{Y s}\right]=E\left[e^{X_{s}}\right] E\left[e^{Y s}\right]=M_{X}(s) M_{Y}(s)$
So convolving the densities corresponds to multiplying transforms.

Example

If X_{i} is bernoulli with with parameter p then $M_{X_{i}}=1-p+p e^{s}$ for $i=1,2, \ldots, n$.
$Y=\sum_{i} X_{i}$ is a Binomial Random Variable.

$$
M_{Y}(s)=\Pi_{i=1}^{n}\left(1-p+p e^{s}\right)=\left(1-p+p e^{s}\right)^{n}
$$

$$
E[X]=\left.n\left(1-p+p e^{s}\right)^{n-1} p e^{s}\right|_{s=0}=n(1)^{n-1} p=n p
$$

$$
E\left[X^{2}\right]=\left.n p\left[(n-1)\left(1-p+p e^{s}\right)^{n-2} p e^{2 s}+\left(1-p+p e^{s}\right)^{n-1} e^{s}\right]\right|_{s=0}
$$

$$
=n p(1-p+n p)
$$

Summing a Random Number of Random Variables

Let $Y=X_{1}+\ldots+X_{N}$ where $X_{i}, i=1,2, \ldots, n$ are iid and N is a random variable.
Then $E\left[e^{s Y} \mid N=n\right]=\left(M_{X}(s)\right)^{n}$. Using Iterated Expectations:

$$
M_{Y}(s)=E\left[e^{s Y}\right]=E\left[E\left[e^{s Y} \mid N=n\right]\right]=E\left[\left(M_{X}(s)\right)^{n}\right]
$$

Recall that $a^{n}=e^{\ln a}$:

$$
\left(M_{X}(s)\right)^{n}=e^{n \ln M_{X}(s)}
$$

So

$$
E\left[\left(M_{X}(s)\right)^{n}\right]=\sum_{n=0}^{\infty} e^{n \ln \left(M_{X}(s)\right)} p_{N}(n)
$$

Now since

$$
\begin{gathered}
M_{N}(s)=\sum_{n=0}^{\infty} e^{s n} p_{N}(n) \\
M_{Y}(s)=E\left[\left(M_{X}(s)\right)^{n}\right]=M_{N}\left(\ln M_{X}(s)\right)
\end{gathered}
$$

Transform of Sum of Random Number of RVs

To find $M_{Y}(s)$:
(1) Find $M_{N}(s)$
(2) Replace s with $\ln M_{X}(s)$, i.e. e^{s} with $M_{X}(s)$.

Example:
Each of 3 gas station is open on any given day with prob $\frac{1}{2}$
The amount of gas available is uniformly distributed on [0, 1000].
Let Y be the total amount of gas available on any given day. Find $M_{Y}(s)$.
N : number of gas stations open:
$M_{N}(n)=\left(1-0.5+0.5 e^{s}\right)^{3}=\frac{1}{8}\left(1+e^{s}\right)^{3}$.
Now

$$
M_{X}(s)=\frac{e^{1000 s}-1}{1000 s}
$$

(Look this up)
So

$$
M_{Y}(s)=\frac{1}{8}\left(1+\frac{e^{1000 s}-1}{1000 s}\right)^{3}
$$

Midterm

Histogram

> Your score
> $\leq 50:$ Concepts, App (50, 70$]:$ Concepts, App $>70:$ Concepts, App.

Mean $=58.41$, Median $=60$ Standard
Deviation $=16.39$.

