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Midterm

It was not an easy exam. You did really well as a group! Most
of you should feel very good about your performance.
Regrades until Thursday. See your GSIs or me. I will make
final call.
Please look at the exam solutions.
Let’s wait until the last 10 mins to discuss more.
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Convolution

Let Z = X + Y and assume that X ,Y continuous and
independent.

fZ (z) =

∫
x
fX (x)fY (z − x) =

∫
y
fY (y)fX (z − y)dx

Graphical Convolution: X ,Y ,Z uniform [0, 1], W = X + Y + Z .
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Covariance

Given X ,Y :

cov(X ,Y ) = E [XY ]− E [X ]E [Y ] = E [(X − E [X ])(Y − E [Y ])]

cov(X ,X ) = var(X )

cov(aX + b,Y ) =

cov(a,Y ) = 0

cov(X ,Y + Z ) = cov(X ,Y ) + cov(X ,Z )

Covariance =0 ⇒ E [X ] = E [X |Y ]

X ,Y independent ⇒ covariance =0

Covariance = 0 6⇒, X ,Y independent.
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Correlation Coefficient

For any two random variables, X and Y with non zero variance,
the correlation coefficient ρ(X ,Y ) is

ρ(X ,Y ) =
cov(X ,Y )√
var(X )var(Y )

.

Special cases for the correlation coefficient, ρ(X ,Y ):

ρ(X ,Y ) =


1, Y = aX + b a > 0;
−1, Y = aX + b, a < 0;
0, E [X |Y ] = E [X ].
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More results

Sum of Variances

Given X1, ...,Xn:

var(
∑
i

Xn) =
∑
i

var(Xi ) +
∑
i

∑
j 6=i

cov(Xi ,Xj)

Iterated Expectation

Given two random variables, X ,Y :

E [E [X |Y ]] = E [X ]
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Estimating with X from Y : E [X |Y ]

Suppose we want to estimate X but have no observations.
How to find the X̂ which minimizes E [(X − X̂ )2], i.e. the mean
square error?

E [(X − X̂ )2] = var(X − X̂ ) + (E [X − g(X )])2

= var(X ) + (E [X − X̂ ])2

= var(X ) + (E [X ]− X̂ )2

So pick X̂ = E [X ] Now suppose we make an observation for
random variable Y , i.e. Y = y . Then what should our estimate
be? Again, we want to minimize mean square error (given Y = y)
so:

E [(X − X̂ )2|Y = y ] is minimized at X̂ = E [X |Y = y ]
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E [X |Y ]: Estimation Error

The mean of the estimate:

E [X̂ ] = E [E [X |Y ]] = E [X ]

Also,

E [ X − X̂︸ ︷︷ ︸
estimation error

] = E [X − E [X |Y ]] = E [X ]− E [X ] = 0

An estimator with zero average estimation error is called unbiased.

E [X |Y ] is an unbiased estimator of X .
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Estimating with X from Y : E [X |Y ]

X̂ is uncorrelated with the estimation error X̂ − X .

cov(X̂ , X̂ − X ) = E [X̂ (X̂ − X )]− E [X̂ ]E [X̂ − X ]

= E [X̂ (X̂ − X )]− E [X ]0

= E [(X̂ )2]− E [XX̂ ]

= E [(X̂ )2]− E [E [XX̂ |Y ]]

= E [(X̂ )2]− E [(X̂ )2]

= 0

So
var(X̂ + X − X̂ ) = var(X̂ ) + var(X − X̂ )

So
var(X ) = var(E [X |Y ]) + var(X − E [X |Y ])
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Law of Total Variance

Since E [X − X̂ ] = 0,
var(X − X̂ ) = E [(X − X̂ )2] = E [E [(X − X̂ )2]|Y ].
Now consider the random variable X |Y . Then

E [var(X |Y )] = E [E [(X − E [X |Y ])2]|Y ].

In the previous slide we showed that:

var(X ) = var(E [X |Y ]) + var(X − E [X |Y ])

Substituting:

Given random variables, X , Y :

var(X ) = var(E [X |Y ]) + E [var(X |Y )]
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Example: Bias of Coin

We toss a biased coin n times. Y : prob of heads, and X : number
of heads. Y is distributed uniformly over [0, 1]. What are E [X ]
and var(X )?

X̂ = E [X |Y ] = nY

E [X ] = E [E [X |Y ]] = E [nY ] =
n

2

var(E [X |Y ]) = var(nY ) = n2var(Y ) =
n2

12

var(X |Y ) = nY (1− Y )

E [var(X |Y )] = n(
1

2
− 1

3
) =

n

6

var(X ) =
n2

12
+

n

6
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Example: Bias of a Coin Continued

Same problem: Let Xi = 1 if toss i is a head and Xi = 0 o.w.
What is cov(Xi ,Xj), i 6= j?

cov(XiXj) = E [XiXj ]− E [Xi ]E [Xj ]

E [Xi ] = E [E [Xi |Y ]] = E [Y ] = 0.5

E [XiXj ] = E [E [XiXj |Y ]] = E [E [Xi |Y ]E [Xj |Y ]] = E [Y 2] =

∫ 1

0
y2dy =

1

3

cov(XiXj) =
1

3
− 1

4
=

1

12
= var(Y )

Therefore the tosses are not independent...
Check result for var(X ):

var(Xi ) = E [X 2
i ]− E [Xi ]

2 =
1

2
− 1

4
=

1

4

var(X1 + ...+ Xn) =
n

4
+

n(n − 1)

12
=

1

12
(3n + n2 − n) =

n2

12
+

n

6
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Summing a Random Number of Random Variables

Suppose Y = X1 + . . .XN , the Xi are iid, but N is a random
variable independent of the Xi ’s. What are E [Y ] and var(Y )?

E [Y ] = E [E [Y |N]] = E [NE [Xi ]] = E [N]E [Xi ]

E [Y ] = E [N]E [X ]

var(Y ) = var(E [Y |N]) + E [var(Y |N)

Now
var(E [Y |N]) = var(NE [Xi ]) = E [Xi ]

2var(N)

E [var(Y |N)] = E [Nvar(Xi )] = var(Xi )E [N]

So
var(Y ) = E [Xi ]

2var(N) + E [N]var(Xi )

14



Outline Logistics Review Estimating X with E [X |Y ] Total Variance Transforms

Moment Generating Functions - Transforms

Sometimes rather than working with fX (x) we work with E [esx ]
where s is any scalar. This is the Transform or Moment
Generating Function of X .
Why?

1 It is easier to find E [X k ], i.e. the moments of X (differentiate
rather than integrate)

2 It is easier to add independent random variables (multiply
rather than convolve)

3 It is easier prove things (e.g. Central Limit Theorem)

Given a random variable X , the Transform of X , MX (s) is defined
as

MX (s) = E [esX ]

for all scalars s
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Generating Moments with Transforms

Use the result that

esx = 1 + sx +
s2x2

2!
+

s3x3

3!
+ . . .

Let X be a rv. Now use Linearity of Expectations:

E [esx ] = 1 + sE [x ] +
s2

2!
E [X 2] + . . .

Now observe that

dE [esx ]

ds

∣∣
s=0

= E [X ]

d2E [esx ]

ds2
∣∣
s=0

= E [X 2]

d3E [esx ]

ds3
∣∣
s=0

= E [X 3]

. . .
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Moment Generating Function

For MX (s) = E [esx ]:

dnMX (s)

dsn
∣∣
s=0

= E [X n]

Properties:

1 MX (0) = 1

2 If X > 0, MX (−∞) = 0 and if X < 0 then MX (∞) = 0.

3 If Y = aX + b than
MY (s) = E [es(aX+b)] = esbE [eaX ] = esbMX (as)
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Example: Exponential Distribution

fX (x) = λe−λx ⇒ E [esx ] = λ
∫∞
x=0 e

sxe−λxdx

MX (s) =
λ

λ− s

M(0) = 1, lims→−∞MX (s) = 0.
Also, if Y = aX + b then

MY (s) = esbMX (as) = esb
λ

λ− as

E [Y ] = besb
λ

λ− as
+ esb

λ

(λ− as)2
a

∣∣∣∣
s=0

E [Y ] = b +
a

λ
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Inversion of Transform

It is somewhat surprising that a given transform corresponds to a
unique CDF, i.e. MX (s) contains all the information in fX (x).
Why is this true? MX (s) is the bilateral Laplace transform of
fX (x).
The inversions are usually done via pattern matching...
Example:

MX (s) =
1

2
e−3s +

1

4
e200s +

1

4
es

pX (x) =


−3, with prob 0.5;
200, with prob 0.25;
1, with prob 0.25.

Helps to know MX (s) for popular distributions.
We won’t require you to know fX (x),MX (s) pairs.
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Combinations

1 Mixture of distributions: Suppose
∑n

i=1 pi = 1, and
fX (x) =

∑n
i=1 pi fXi

(x). Then

MX (s) =
n∑

i=1

piMXi
(s)

2 Sum of Independent Random Variables: Z = X + Y ; X ,Y
independent. Then

MZ (s) = E [e(X+Y )s ] = E [eXseYs ] = E [eXs ]E [eYs ] = MX (s)MY (s)

So convolving the densities corresponds to multiplying transforms.
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Example

If Xi is bernoulli with with parameter p then MXi
= 1− p + pes for

i = 1, 2, ..., n.
Y =

∑
i Xi is a Binomial Random Variable.

MY (s) = Πn
i=1(1− p + pes) = (1− p + pes)n.

E [X ] = n(1− p + pes)n−1pes
∣∣∣∣
s=0

= n(1)n−1p = np

E [X 2] = np[(n − 1)(1− p + pes)n−2pe2s + (1− p + pes)n−1es ]

∣∣∣∣
s=0

= np(1− p + np).
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Summing a Random Number of Random Variables

Let Y = X1 + ...+ XN where Xi , i = 1, 2, ..., n are iid and N is a
random variable.
Then E [esY |N = n] = (MX (s))n. Using Iterated Expectations:

MY (s) = E [esY ] = E [E [esY |N = n]] = E [(MX (s))n]

Recall that an = e ln a:

(MX (s))n = en lnMX (s)

So

E [(MX (s))n] =
∞∑
n=0

en ln(MX (s))pN(n)

Now since

MN(s) =
∞∑
n=0

esnpN(n)

MY (s) = E [(MX (s))n] = MN(lnMX (s))
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Transform of Sum of Random Number of RVs

To find MY (s):

1 Find MN(s)
2 Replace s with lnMX (s), i.e. es with MX (s).

Example:
Each of 3 gas station is open on any given day with prob 1

2
The amount of gas available is uniformly distributed on [0, 1000].
Let Y be the total amount of gas available on any given day. Find
MY (s).
N: number of gas stations open:
MN(n) = (1− 0.5 + 0.5es)3 = 1

8(1 + es)3.
Now

MX (s) =
e1000s − 1

1000s

(Look this up)
So

MY (s) =
1

8
(1 +

e1000s − 1

1000s
)3
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Midterm

Mean=58.41, Median = 60 Standard
Deviation=16.39.

Your score

≤ 50: Concepts, App
(50, 70]: Concepts, App
> 70: Concepts, App.
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